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The complete  error potential  is a funct ion of  electronic and nuclear  coordinates 
which has to be added  to the physical potential  in order  to obtain the 
eigenfunctions of  the molecular  Hamil tonian in an a priori specified approxi- 
mation. This potential is essential for the error theory,  in part icular  it furnishes 
a simple justification o f  the Born -Oppenhe imer  approximat ion.  It is given as 
a sum of  the electronic error potential and that of  the intramolecular  forces, 
whose impor tance  is discussed. 
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1. Error theory in quantum chemistry 

The error theory for Schr6dinger  quantum mechanics  has been developed since 
1953 [1]. Relying on Weinstein 's  per turbat ion theory [2], one calculates the error 
b o u n d  step, which leads to the concept  o f  the error potential  [3, 4], a trivial and 
well known concept  [5]. The origin o f  this idea, as well as related methods,  are 
reviewed in [6]. 

1.1. Electronic error potential  

The electronic error potential  is defined as 

v :  q~2[E (y)- •(x; y)] q~el, 
where ~bet represents an approximat ion  to the eigenstate o f  the Hamil tonian 
/-t(x; y)  and E ( y )  is the mean  value o f / 4  on qJe~. F rom its form, it is apparent  
that  it establishes a connect ion  between several problems, namely:  

1. It provides a physical  meaning of  the approximat ion  made for q'e~. It is the 
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potential which must be added to the potential appearing in /-I(x; y) in order 
that ffe~ becomes an exact eigenstate. 

2. It enables us to calculate the upper bounds for the errors of observables, taking 
into account the "molecular diagram" [6-9] (which denotes or generalises a first 
order density matrix). 

3. It provides a local test of  ~0et in the configuration space as well as in the 
physical space. 

4. It allows for the correction of  errors in the structure or in the energy. One can 
associate an improved solution with each proposed solution [4, 6, 8, 10] leading 
to an iterative procedure whose convergence is controllable. 

5. It establishes the relationship between the correlation error of the wavefunction 
and the quantum potential of L. de Broglie [11, 12]. 

[6] gives a brief overview of  the developments in the error theory since 1 960 [ 13 ], 
including the special forms of  the error potential which have been found, and 
related concepts [14] in particular the pseudo-potentials. "The local error" [15], 
published in 1985, contains an identical expression to that of the error potential 
even though derived from another series of  concepts [16]. Until now, the theory 
of  the error potential was not formulated for the molecular system consisting of 
electrons and nuclei; this will be done in this paper. 

1.2. The complete error potential 

Consider a complete Hamiltonian 

/-I(x; y) = ry + He(x; y) = Ty + Tx + W(x; y) (2) 

where x represents the electronic configuration, y the nuclear configuration, 7" 
the operators of  kinetic energy, and W the electrostatic potential of  the system. 
Let 05(x;y) be an approximate eigenfunction of  H(x;y)  considered as a 
molecular wavefunction. In order that 05 becomes an eigenfunction of  the per- 
turbed Hamiltonian H ( x ;  y) + P(x; y), we must take as a perturbation the follow- 
ing expression. 

P(x; y) = 05-'(x; y ) [ H - / 4 ( x ;  y ) ] r  (3) 

( H  denotes the mean value of  iQ on 05(x; y)). P(x; y) will be called the complete 
error potential. It can be written as a sum of  two terms: 

P("~ y) --- 05-'(x; y)(Ty - :T,) 05 (4) 

and 

P(")(x;  y) = r  y)[He - /-)e(x;  y ) ] r  (5) 

(the quantum mean values on 05 are designated by suppressing the caret). 

2. Calculation of the error resulting from the Born-Oppenheimer separation 

According to the Born-Oppenheimer  theorem (in the following abbreviated as 
BO) an approximation of  the molecular wavefunction is given by 

r y) = ~0, (x; y)lg,.~(y) (6) 
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where n designates the set of  quantum numbers associated with the state of the 
system of electrons, v the set of quantum numbers associated with the state of 
the nuclear framework; ~b.(x; y) and O.,~(y) as well as the corresponding eigen- 
values E . ( y )  and w..~ are defined by Eqs. (7) and (8), respectively, using He(x;  y )  
defined in Eq. (2). 

/-te(x; y)~b.(x; y) = E, , (y )~ , . (x ;  y)  (7) 

[ Ty + E. (y)]On0~(y) = to.,~| (8) 

Let us calculate, for the function q, given by Eq. (6), the second term p(et) (Eq. 
5), of the complete error potential, taking into consideration Eq. (7). 

H~ = (~b.(x; y)O..~(y)lI2I~(x; y)JO.on,.} = (@~On,~lE. (y)l@.O.,~) = (E~(y ) )  

~b ~,l~(x; y)I2Ie(X; y)tb.,~(X; y) = tp~(X; y ) O ~ ( y ) I 2 I ~ ( x ;  y)t~nO.,~ 

= $~lo2,1vEn(y)tPnOn, v = En(y )  (9) 

p~et)(y) = ( E , ( y ) )  - E , ( y ) .  (10) 

This term depends only on the nuclear configuration y, In particular for the 
equilibrium configuration Yeq, the energy reaches its minimum E~ r~o~ and thus 

P(et)(Yeq) = ( En(Yeq) ) - E(~ "'"). (11) 

To evaluate the term p~,,o) in Eq. (4), we observe: if y = (y(~)), then 

~b.(x; y) - O.(x; Yeq) =~/ [Y(i) "(i)'lO---~-On(X; yq) -- Yeq J oy( i) 

where y~q~ [y~,  y")]. The expression in [ ] is small in the vicinity of the 
equilibrium; the other factors, proportional to the momenta, decreases with 
increasing nuclear mass. Therefore 

~b.(x; y) ~ ~b.(x; Yeq). (12) 

Following Eqs. (12) and (8), we have 

Ty ~- (~b.(x; y)O.,~(y)] Ty + E. (y)[~b.(x; Yeq)| 

- (6 . (x ;  y)[En(y)[fb, , )= to..~ - (E. (y)), 

6 -1Ty(~n(X; y )  ~ O.)n,r~ -- E~ (y), 

p~o)  ~ E~(y )  - ( E , ( y ) ) .  (13) 

Considering approximation (12), the expression for p(~o), Eq. (13), is the negative 
of the expression for p(ft), Eq. (10), for arbitrary n, thus 

p. = p(~O+ p(.o) .~ O. (14) 

The use of the complete error potential made this calculation very simple. At the 
same time, it showed that there is a compensation between the errors coming 
from the kinetic energy of nuclei on the one hand, and from the electronic 
Hamiltonian on the other. Finally, it indicated that the residual error is due to 
the modification of the electronic wavefunction as either we move away from 
the equilibrium, or the nuclei are made lighter. 



272 A Laforgue and P. Gu6rin 

3. Complete error potential due to the approximation 
of the electronic wavefunction 

The methods for finding the electronic wavefunction F~(x; y) usually generate 
an error, as indicated by the following eigenvalue equation 

[/4e(X; y ) +  V.(x; y)]F . (x ;  y) = [Eo(y)+AE.(y)JF. (x;  y). (15) 

Expression (16) for the complete wavefunction will replace expression (6) thus 
enabling the calculation of the complete error potential. 

,t, ('wP)( r. y) = F. (app) (x; y)O, , ,  (y). (16) - u  t l ,  p \ - - ~  

Equation (7) is replaced by Eq. (17) defining AE., as an increase in the electronic 
energy due to the error 

[/~e(X; y)+ V.(x; " 'l"~(aPP)tx" y)Jq'.,~ t , Y) = [E.(y)+AE.(Y)]fb~,Y)(x; Y) (17) 

The calculation of the expression (7) for p~e*) is modified as follows 

H~ app) = (I" n (x; " "q~)(app)(""~IH (X" (app) 

(app) . .  ," ~1 F o ( a p p ) \  = (F.(x;  y)@.,~ (y)[E.(y) + AE.(y) - v.~x; Y)I . . . .  / 

= ( E . ( y ) ) + ( A E . ( y ) ) - ( V . ( x ;  y)). (18) 

We therefore obtain (the last Dirac bracket, which is zero, being written as a 
reminder). 

p{et)(y) = ( E . ( y ) ) - E . ( y ) + ( A E . ( y ) ) - A E . ( y ) +  V.(x; y ) - ( V . ( x ;  y)). (19) 

On the other hand, the expression for p~.o~, Eq. (13), remains unchanged in view 
of the approximation (12). Hence, we finally have 

P. ~- l . ( y )  + V.(x; y) (20) 

where 

I. (y) = (AE. (y)) - AE. (y). (21) 

3.1. Potential of intramolecular forces 

The term I . (y)  may be considered as a potential in the nuclear configuration 
space. It implies intramolecular forces 

F).~ - Ok(y) (22) 
O R j  ' 

(the intramolecular forces were independently defined [23-28] on the basis of a 
partition of the total electronic energy). We can draw equipoential lines of In (y). 
We shall let the molecular approach its equilibrium configuration (nonrelativistic) 
by applying the perturbation - I~(y) .  

The terms In and Fj have physical meanings provided AE~(y) is given one. If 
we neglect the ionic energy, then ionic forces appear, if we neglect the correlation 
energy, correlation forces appear; if we neglect the formation energy of a super- 
molecule, intermolecular forces appear (we could also say "'intrasupermolecular 
forces"). 
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Intramolecular forces are often considered [17-19]. One of us has contributed 
to the following approaches: intra-atomic forces [20], intramolecular electrostatic 
forces [20-22], and since 1983 correlation forces [23-28]. The definition of the 
potentials I,(y) generalizes these later developments. The molecular model of 
forces is consistent with the representation of  the molecular environmental effects 
by external forces. 

3.2. Correlation as an example [23-28] 

For a theoretical discussion, it is necessary to consider a starting configuration 
which contains the entire correlation error, i.e. the wavefunction with doubly 
occupied orbitals having minimal energy. This configuration must be perturbed 
in the opposite sense from the complete error potential P,(x; y). The term -I,,(y) 
moves the nuclei in the direction of the intramolecular correlation forces. The 
term -V~ (x; y) modifies the electronic configuration, which can only be realized 
by the creation of partial holes in the occupied orbitals and by the partial 
occupation of unoccupied orbitals [29]. This can be compared with a statistical 
redistribution of the populations in the energy levels [25-27]: The levels which 
are almost completely occupied simulate a condensed phase while the levels 
which are almost empty simulate a gas phase, which is in equilibrium with the 
condensed phase. The excitation from bonding orbitals to antibonding orbitals 
simulates a pressure. This simplified picture of intramolecular vaporization per- 
mits the prediction of  a preference for dilation and symmetrisation, which 
becomes exact if we analyse I,(y). The electronic error potential V,,(x, y) and 
the potential of the correlation forces describe the same global phenomenon< 
Nevertheless, the situation varies for different molecules and the correlation may 
be analyzed in various ways [27, 28]. 

4. Conclusion 

We have defined the complete error potential for a molecule. We limited ourselves 
to the nonrelativistic case. This complete error potential is expressed as a sum 
of the electronic error potential and the potential of the intramolecular forces. 
This complete error potential generalizes the properties of the electronic error 
potential and explains the molecular model of  forces. 

With the use of this potential it is finally possible to evaluate and to discuss the 
Born-Oppenheimer approximation and in particular the specific behaviour of 
hydrogen nuclei. 
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